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Mixed convection flow about a vertical plate fin embedded in a variable porosity medium, 
based on the conjugate convection-conduction theory, is analyzed. The non-Darcian 
effects, which include the no-slip and inertial effects, and nonuniform porosity condition 
are considered. Inclusion of these effects significantly alters the heat transfer from those 
predicted by using the Darcy flow model. For comparison, computations of heat transfer 
characteristics based on three velocity models, i.e., the Darcy-Brinkman-Ergun model with 
uniform and nonuniform porosities and the Darcy flow model, are performed. The results 
show that due to the near-wall porosity variation, the heat transfer rate is greatly increased. 
The effects of the conjugate convection-conduction parameter and the buoyancy force 
parameter on fin temperature distribution, the local heat transfer coefficient, local heat 
flux, overall heat transfer rate, and fin efficiency are illustrated. 
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I n t r o d u c t i o n  

Convective heat transfer in porous media has been studied by 
scientists and engineers in various disciplines. These include 
geophysics, hydrology, geothermal operations, heat exchange 
systems, packed-bed catalytic reactors, insulation engineering, 
and many others. Cheng ~'2 has reviewed some excellent work 
resulting from those investigations. Most of the existing ana- 
lytical studies deal primarily with mathematical simplification 
based on Darcy's law, which cannot account for the effects of 
a solid boundary, inertial forces, and variable porosity on fluid 
flow and heat transfer through porous media. Boundary effects 
are expected to become more noticeable when heat transfer is 
considered in the near-wall region. Inertial effects also become 
important when fluid velocity is high. Non-Darcian effects, i.e., 
the boundary and inertial effects on heat transfer for constant- 
porosity media were analyzed by Vafai and Tien a for forced 
convection, and by Ranganathan and Viskanta* for mixed 
convection. Both the boundary and the inertial effects decrease 
fluid velocity in the thermal boundary layer and reduce heat 
transfer rates. 

In some applications, such as fixed-bed catalytic reactors, 
packed-bed heat exchangers, drying, and chemical reaction 
engineering, the constant-porosity assumption is no longer 
valid. Due to the variation in packing near the solid surface, 
the porosity near the wall is larger than that in the main stream, s 
This leads to the occurrence of a maximum velocity in a region 
very close to the wall, called flow channeling. 6'7 The variable- 
porosity effects on convective flow and heat transfer were 
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examined by Vafai 8 for forced convection and by Hong et al. 9 

for natural convection. They showed that the flow-channeling 
effect significantly increases the heat transfer rate. 

Conventional studies of heat transfer in porous media are 

based on assumed temperature distributions along the im- 
permeable surface. In many of the applications cited, taking 
into consideration the interaction between the solid boundary 
and its adjacent boundary-layer flow would more closely 
approximate the physical situation. Thus, in the analysis of 
heat transfer from a long fin, it is more realistic to leave the 
heat transfer coefficient unspecified and treat it as part of the 
solution. Conjugate heat transfer problems induced by various 
convection mechanisms have been investigated extensively. 10-13 
In recent papers by Liu et al., t*'~5 the analysis has been 
extended to include conjugate mixed convection-conduction 
heat transfer in porous media using Darcy's law. More recently, 
boundary and inertial effects on conjugate mixed convection 
heat transfer in a constant high-porosity medium were examined 
by Gill and Minkowycz ~6 in a similar analysis. 

In the present investigation, attention is given to the non- 
Darcian and nonhomogeneous effects on conjugate mixed 
convection-conduction heat transfer in a packed-sphere bed. 
The Darcy-Brinkman-Ergun model is used as the momentum 
equation, with the porosity variation of the packed bed approxi- 
mated by an exponential function. The boundary-layer equations 
are coupled with the one-dimensional (l-D) heat conduction 
equation in the fin through interfacial conditions. Numerical 
solutions of the governing differential equations are generated 
by an efficient finite difference method. Finally, the qualitative 
effects of the controlling parameters on heat transfer are 
demonstrated graphically. 

Analysis  

Consider the problem of the boundary-layer flow along a 
vertical plate fin of length L and thickness 23, which is embedded 
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vertically downward in a fluid-saturated porous medium at an 
ambient temperature of To~, as shown in Figure 1. The fin base 
temperature is maintained at a constant temperature Tb, which 
is higher than T®. The coordinate system--with the origin at 
the tip of the fin--is oriented so that the gravitational force 
acts in the negative x-direction and the y-axis is perpendicular 
to the fin surface. At free stream, a uniform flow with velocity 
u~ is flowing in the positive x-direction. Thus the buoyancy 
force is acting in the same direction as the external flow. Under 
the assumptions that the fluid and the porous medium are 
in local thermal equilibrium--and that the boundary-layer 
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Schematic diagram of the physical problem 

and Boussinesq approximations are applicable--the governing 
equations for flow in the porous medium, with the momentum 
equation based on the Darcy-Brinkman-Ergun model, are 3 

It u+pC(y)u2= _t~p + p g f ( T _  It O2u (1) 
K(y) 8x d~ Oy 2 

dT t~T 82T 
u - - + v  - - = : t  - -  (2) 

c~x 8y 6~y 2 

where u and v are the velocity components in the x- and 
y-directions; T, p, and # are the temperature, pressure, and 
gravitational constant; p, It, and fl are the density, viscosity, 
and thermal expansion coefficient of the fluid; ~ is the effective 
thermal diffusivity of the saturated porous medium; K(y) and 
C(y) are the permeability and inertial coefficient of the porous 
medium; and q~ is the porosity of the packed bed. The functional 
dependence of the porosity on the distance y from the wall can 
be found from the experimental work by Benenati and Brosilow. 5 
Although the porosity variation oscillates, a simple exponential 
function is usually assumed to account for the effect of non- 
homogeneity, as used by several investigatorsa'9'17: 

This representation neglects the small oscillations of porosity, 
which are considered to be secondary. The emphasis here is on 
the decay of porosity from the solid wall, which has the primary 
effect. Here q~ = 0.4 is the free-stream porosity, y is the distance 
from the wall, d is the sphere diameter, and b and c are 
experimental parameters, that depend on the packing of the 
spheres near the solid wall. We chose the value of b so that the 
porosity at the wall is ~bw and the value of c to approximate 
porosity decay. The Darcian and inertial terms in the momentum 

Notat ion 

b Porosity-variation parameter (Equation 3) 
C Inertial coefficient (Equation 1) 
c Porosity-variation parameter (Equation 3) 
Da Darcy number, K~/L 2 
d Particle diameter 
f Dimensionless stream function 
g Gravitational constant 
h Local heat transfer coefficient 

Dimensionless local heat transfer coefficient, 

hL/ (kx~e)  
/i Average heat transfer coefficient (Equation 30) 
K Permeability 
k Effective thermal conductivity of the porous medium 
k I Fin thermal conductivity 
L Fin length 
N c Convection-conduction parameter, kLx//~/(ki3)  
Pe Peclet number, u~L/:t 
Pr Prandtl number, v/ct 
p Pressure 
Q~ Overall heat transfer rate (Equation 34) 

Dimensionless overall heat transfer rate, 
Q/(k( T b - T ~ ) w / ~  ) 

q Local heat flux 
c~ Dimensionless local heat flux, qL/(k(T b -- T~)x/Re) 
Re Reynolds number, uooL/v 
T Temperature 
u Velocity in x-direction 

v Velocity in y-direction 
x Streamwise coordinate 
y Cross-stream coordinate 

Greek letters 
Effective thermal diffusivity 

fl Coefficient of thermal expansion 
Plate fin half thickness 

~/ Pseudosimilarity variable (Equation 14) 
~/¢fe Fin efficiency (Equation 38) 
0 Dimensionless temperature 
A Inertial parameter, Co~Ko~u~/v 
p Dynamic viscosity of fluid 
v Kinematic viscosity of fluid 

Dimensionless streamwise coordinate 
p Density of fluid 
~b Porosity 

Stream function 
f~ Buoyancy force parameter, gflK®(Tb--T®)/(VUo~) 

Subscripts 
b Condition at the fin base 
f Quantities associated with the fin 
w Condition at the wall 
oo At a distance from the wall 

Superscripts 
' Differentiation with respect to q 
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equation contain the empirical coefficients K and C, which are 
determined from the well-known correlations developed by 
Ergun 18 for flow in a packed bed: 

d2~ 3 
K -  (4) 

150(1-4)) 2 

1.75(1-4)) 
c -  (5) 

d~ 3 

The boundary conditions for Equations 1 and 2 are 

u = v = 0 ;  T=Tw(x) at y = 0  (6) 

u=uo~; T=T~ as y--,oo (7) 

If the thickness of the fin is relatively small compared to its 
length, heat conduction within the fin can be considered to be 
1-D. Accordingly, the governing equation for temperature 
distribution along the fin is 

d 2 T y  
k:5 ~-x2= h(x)(T:-- To) (8) 

where T: is the temperature of the fin, k: is the thermal 
conductivity of the fin, h(x) is the local heat transfer coefficient, 
which is unknown at present and will be obtained as part of 
the solution. The boundary conditions for the fin are 

dT:=o at x = 0  (9) 
dx 
T:(x)=T b at x=L (10) 

where the heat loss from the tip of the fin is assumed to be 
negligible. 

The boundary layer equations are coupled with the fin con- 
servation equation through the following interfacial conditions: 

T(x,y)=T:(x) at y = 0  (11) 

~3T x -k~y(,y)=h(x)(T:(x)-T~o) at y = 0  (12) 

These two conditions state the physical requirements that the 
temperature and heat fluxes of the fin and the porous medium 
must be continuous across the fin-fluid interface. 

To facilitate the analysis, the following transformations are 
introduced to nondimensionalize the preceding equations 

~ = x  (13) 
L 

q = y  (14) 

qt = ~x//a~xf(~, ~/) (15) 

T-T~ 
0 (16) 

T~- T~ 

Ty--T~o (17) 
0:- Tb--T® 

where the stream function ff is defined as 

0q, ~0 
u = - -  and v = - - -  (18a, b) 

Oy Ox 
When the transformations given by Equations 13-16 are 
applied to Equations 1 and 2, 

PeDa  ,. C ,2 K~ , 
~ f - ( ~ £ ) A ( f ) - ( - ~ - ) f  + Q 0 + I + A = 0  (19) 

0"+ 10'~f~ =4( '~30 O'Of) f c3~- ~ (20) 

where 

Da =K~o 
L 2 

p c =  u~L 

C~K~u~ 
m - - -  

y 

and 

gflK~(Tb- T~) n _  
YU oo 

is the buoyancy-force parameter, which is a measure of the 
relative importance of free convection to forced convection. 
After the transformation, Equations 6 and 7 become 

f ' = 0 ;  ~o0--f+½f=0; 0=0w at r /=0 (21a-c) 

f ' = l ;  0 = 0  as t/--,oe (22a, b) 

where the primes indicate differentiation with respect to q. 
Equations 8-10 can be expressed in the following dimensionless 
form: 

d2Of-N31(~)O f (23) 
d~ 2 

¢=o:dO:=o (24) 
d¢ 

= 1 : Of = 1 (25) 

where N¢ = kLx//~/k:6 and h(~)= hL/kx//~ are the conjugate 
convection-conduction parameter and the dimensionless local 
heat transfer coefficient, respectively. 

The interfacial conditions in terms of the new variables are 

O=Of at q = 0  (26) 

- 0  '-~(~)x/~O:~ at q = 0  (27) 

where P r=v /e  is the Prandtl number. Equations 19-27 con- 
stitute the governing equations and boundary conditions for 
the present problem. This complete set of equations must be 
solved simultaneously because of the coupling of the system. 
Numerical solutions for the entire set of equations, Equations 
19-27, was obtained by using a modified version of the implicit 
finite-difference techniqueJ 9 The details of the computational 
procedure are similar to those described in Ref. 10 and will not 
be repeated here. 

R e s u l t s  a n d  d i s c u s s i o n  

The numerical results--with a focus on the non-Darcian, 
nonuniform porosity, buoyancy, and nonisothermal effects-- 
are presented for a packed-sphere bed with particle size 
d = 5 mm. The free-stream permeability and inertial coefficient 
can be calculated from Equations 4 and 5. The values of 
empirical constants b and c in Equation 3 are 1 and 6, 20 
respectively. In obtaining the computational results, we also 
used the following values of input parameters: Pr=4.35,  
Re = 12,490 for water at v =0.8007 x 10 -6 m2/s, L =0.5 m, and 
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Figure 3 Fin temperature distributions for Q=2 

uo~=0.02m/s. The convection-conduction number Nc and 
mixed convection parameter f~ are considered in the range of 
0-2.0. The figure legends identify the three different flow models 
considered: uniform porosity and nonuniform porosity, which 
refer to the Darcy-Brinkman-Ergun model with uniform and 
nonuniform porosities, respectively, and the Darcy flow model. 

Results for the fin temperature distributions are presented 
for some selected values of N~ in Figure 2 for pure forced 
convection (fZ=0) and in Figure 3 for mixed convection 
(FZ = 2.0). Comparing these values with the results based on the 
Darcy flow model shows that in all cases the non-Darcian effects 
decrease fin temperature variations, and nonuniform porosity 

effects increase fin temperature variations significantly. The 
reason is that nonhomogeneity enhances convective heat transfer, 
resulting in lower temperatures. Fin temperature distributions 
also depend on the parameters Nc and fZ. All of the fin 
temperature distributions increase monotonically from the tip 
of the fin to the base. Figures 2 and 3 show that larger values 
of Nc predict larger base-to-tip temperature variations. The 
basic cause of this behavior is that larger values of N c correspond 
to lower fin conductances and higher convective cooling, which 
promote greater fin temperature nonuniformities. Higher fin 
temperature variations are also seen in mixed convection flows. 
This is evident from the fact that the buoyancy force assists the 
flow and thus enhances heat transfer rates. 

In terms of its usual definition, the local heat transfer 
coefficient of the fin can be expressed as 

k OT 

h(x) (28) 
(Ty--T~) 

or in dimensionless form as 

h(~)= hL , , / ~  0'({, 0) (29) 

( k v / ~ )  (,,/~ 0,) 

Figures 4 and 5 show the representative distributions of this 
quantity along the fin surface for pure forced convection and 
mixed convection based on various flow models  As these figures 
show, the non-Darcian effects reduce the local heat transfer 
coefficients in uniform-porosity media. The coefficients are 
increased because of the nonhomogeneity in porosity. Similar 
results are reported in Ref. 9. 

For  a pure forced convection flow at low N c (No=0.2), the 
local heat transfer coefficient decreases along the increasing 
streamwise direction, with relatively fast changes near the fin 
tip and more gradual changes downstream. For  the larger value 
of Nc (No = 2.0), the h values begin with a sharp drop near the 
fin tip and then tend to level off, taking on more constant values. 

Consider now mixed convection flows, as shown in Figure 5. 
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At higher values of N,, the coefficients decrease rapidly at first, 
attain a minimum, and then increase steadily with <. This 
behavior results from an enhanced buoyancy force along 
the streamwise direction, which further accelerates the flow. 
Figure 5 also reveals that the local heat transfer coefficients 
decrease monotonically in the direction of fluid flow at the 
smaller value of N,. 

The average heat transfer coefftcient can be obtained from 

(301 

which can be cast in dimensionless form as 

(311 

The numerical results of this quantity are given in Figure 6. 
It is obvious that as a consequence of near-wall porosity 
variation, higher values of average heat transfer coefftcients 
prevail in flows through variable-porosity media. Also, the 
average heat transfer coefftcients increase with increasing N, or 
R. 

The local heat flux along the tin surface can be expressed as 

q(x)= -kE 
ay y=. 

or 

(321 

Figures 7 and 8 present distributions of the dimensionless local 
heat flux at the fin surface. For given values of the convection- 
conduction parameter and the buoyancy force parameter, it is 
clear from the figures that the non-Darcian effects decrease the 
local heat flux and the effect of nonuniform porosity is to 
increase this quantity. Comparing Figures 7 and 8 reveals that, 
because of buoyancy, the local heat fluxes for mixed convection 
are higher than those for pure forced convection. The results 
also show that as N, increases, most of the heat flux is convected 
to the fluid near the tin base. This effect is attributed to the 
fact that a higher value of N,, representing a lower thermal 
conductivity of the fin, yields a higher temperature near the 
base. 

The overall rate of heat transfer can be computed either from 
the integration of local convective flux at the tin surface or from 
the heat conduction from the base into the tin at 1: = 1.0. In 
dimensional terms, we have 

Q=2 [L&)dx 

X/L 

Figure 7 Local heat fluxes for R=O 
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Numerical values of Q obtained from both approaches are 
found to be in excellent agreement. Results of the dimensionless 
Q are plotted in Figure 9 as a function of Nc. This figure shows 
that the overall heat transfer rates decrease because of the 
non-Darcian effects and increase because of porosity variation. 
These results agree with the previous results for local heat fluxes. 
They also show that the overall heat transfer rate decreases with 
an increasing Nc and a decreasing ft. A higher value of Nc 
represents a more nonisothermal fin, and therefore results in a 
smaller value of the overall heat transfer rate. The effect of the 
buoyancy force is to enhance the heat transfer rate, as expected. 

The fin efficiency compares the heat transfer for a real fin 
with that for an isothermal fin. With this definition, we have 

Q 
Y/eff - -  (38) 

Qiso 

where Qiso denotes the overall heat transfer rate resulting from 
an isothermal fin. The results of r/at versus N c are presented in 
Figure 10 for representative values of f~. Fin efficiency is also 
regarded as a measure of the departure of the fin temperature 
distribution from a uniform T b. Thus the downsioping curves 
indicate that larger values of N c give rise to greater fin 
temperature nonuniformities and less efficiency. Note also that 
the heat transfer rate from the corresponding isothermal fin is 
not the same for flows based on different models. Therefore a 
greater efficiency does not imply a higher heat transfer rate for 
different flows. 

C o n c l u s i o n s  

An analysis was performed to obtain the solution to the problem 
of conjugate mixed convection from a vertical plate fin embedded 
in a porous medium, taking into consideration non-Darcian 
and nonuniform porosity effects. Three flow models were used 
to show the importance of porosity on heat transfer in variable 
porosity media. We found that the effect of porosity variation 
is to increase fin temperature nonuniformities, heat transfer 
coefficients, and heat transfer rates; non-Darcian terms result 
in reverse effects. The influence of other governing parameters 
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on the predicted heat  t ransfer  characteris t ics  was discussed in 
detail. N o n m o n o t o n i c a l  local heat  t ransfer  d is t r ibut ions  are 
observed at a high conjugate convec t ion-conduct ion  parameter .  
This behav io r  is similar to the case of classic fluids. 
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